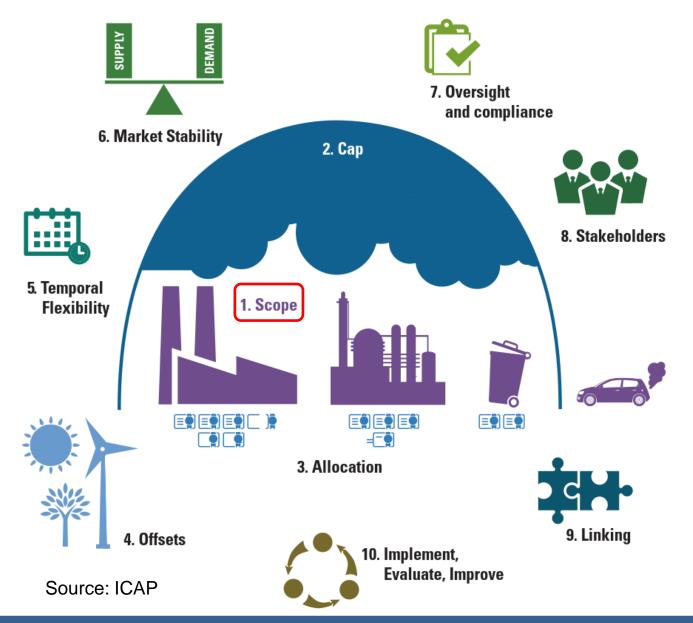


EMISSIONS TRADING IN PRACTICE Step 1: Decide the Scope

William Acworth

Taller de Capacitación en Mecanismos de Emisión Transables


Por encargo de:

de la República Federal de Alemania

STEP 1: DECIDE THE SCOPE

Outline

- 1. Breadth of the scope
- 2. Sectors and gases to be included
- 3. Point of regulation
- 4. Emissions thresholds
- 5. Level of reporting obligation

The scope defines the geographic area, sectors, emission sources, GHGs and entities that will be

What are the benefits or risks of broad coverage?

STEP 1: DECIDE THE SCOPE

How broad should your ETS be?

Broad Scope

Greater certainty over national emission targets and ETS cap trajectories

increased efficiency: through more abatement options and greater liquidity

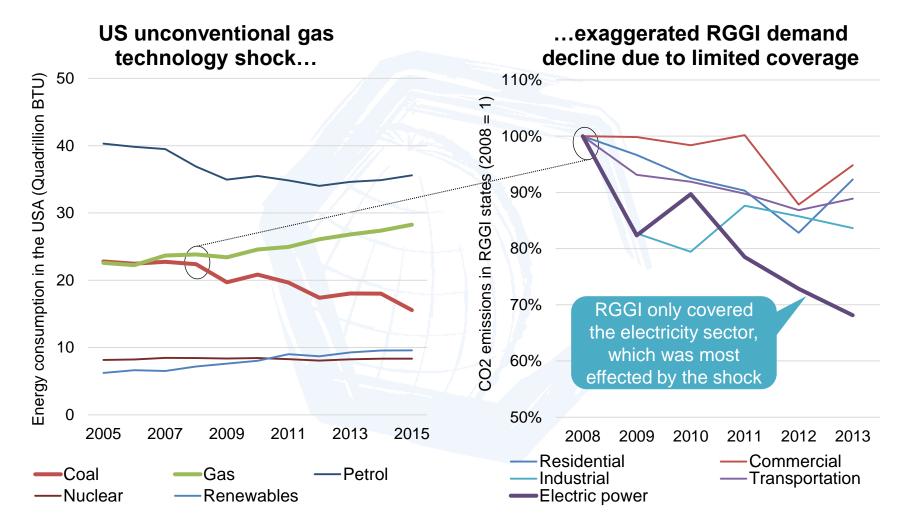
more stable prices: with reduced exposure to shocks

Competitiveness impacts: Broad coverage reduces distortions between covered

Narrow Scope

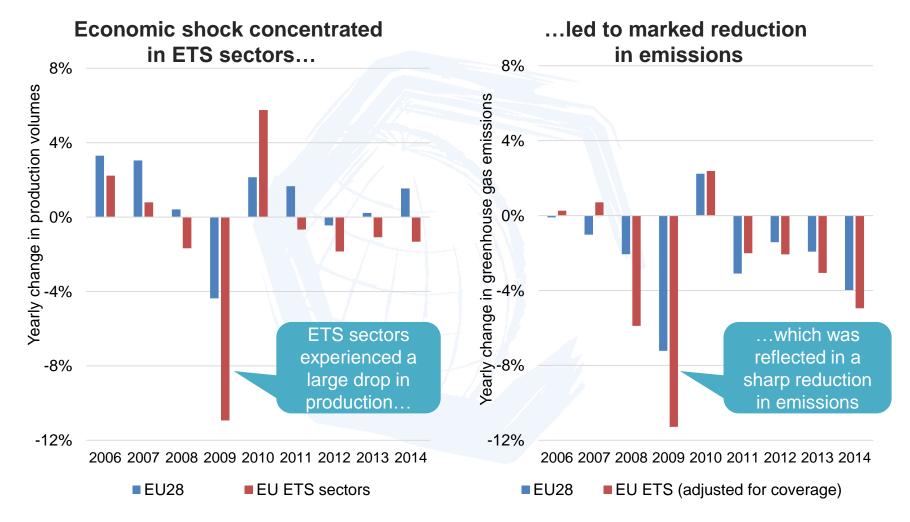
Lower transaction and administrative costs when small emitters are excluded

Distributional challenges: Inclusion of sectors with high marginal abatement costs may lead to a disproportionately high share of compliance costs being borne by them, especially if costpass through varies among sectors


Efficiency: scope and cost pass through determines potential sources of abatement

Consumers Suppliers **Distributors Coverage of:** Reduced Abatement Reduced consumption Electricity option: Changed distribution and increased generation mix losses energy efficiency Cleaner Changed Efficient resource Industry production consumption extraction choices processes Less driving, Vehicle Vehicle mix more public Transport technology transport

Cost pass through to:



Price stability: limited coverage can expose a market to sector specific shocks

Price stability: the impact of Europe's recession on the EU ETS

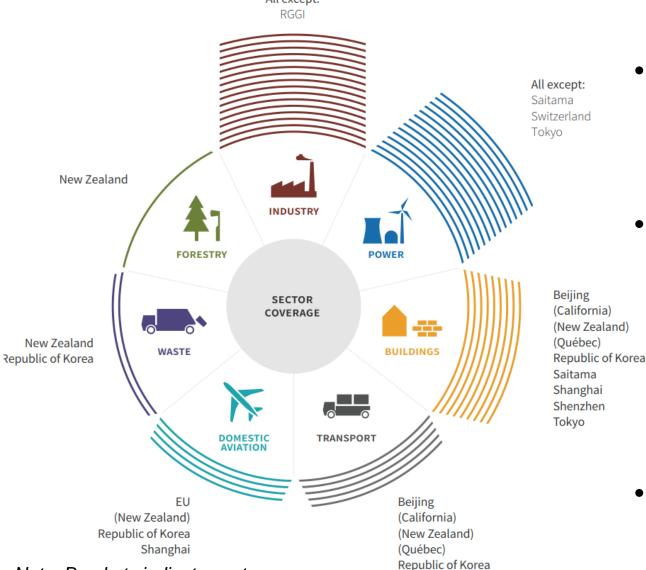
Outline

1. Breadth of the scope

2. Sectors and gases to be included

- 3. Point of regulation
- 4. Emissions thresholds
- 5. Level of reporting obligation

Which sectors and gases should be included?

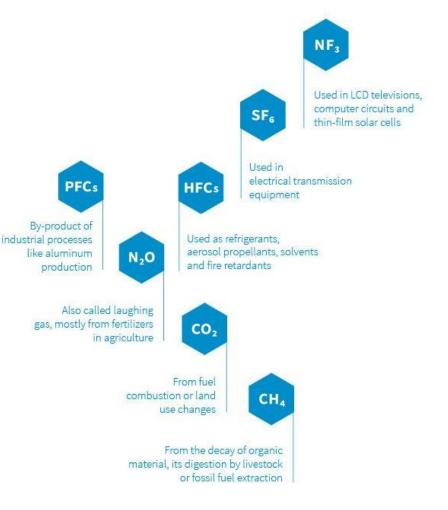

Which sectors should be covered?

- Contribution of the sector to national GHG emissions?
- Are there already other climate policies in place?
- What is the **composition of the sector**?
 - Small number of large emitters?
 - Many small, diffuse or remote emitters?
 - How hard is it to measure emissions?
 - How much mitigation potential and at what cost?
- What are possible co-benefits from including the sector?

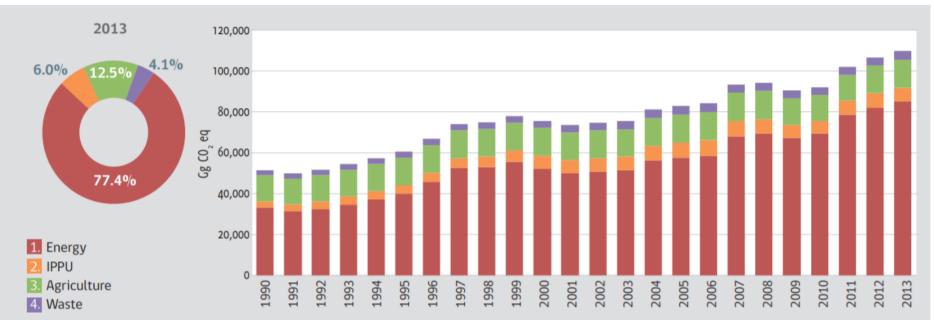
STEP 1: DECIDE THE SCOPE

Sector coverage in existing ETS

- Most systems cover power and industry sectors
- An increasing number of systems are covering buildings and transport
- Only NZ covers the forestry sector


Note: Brackets indicate upstream coverage

STEP 1: DECIDE THE SCOPE

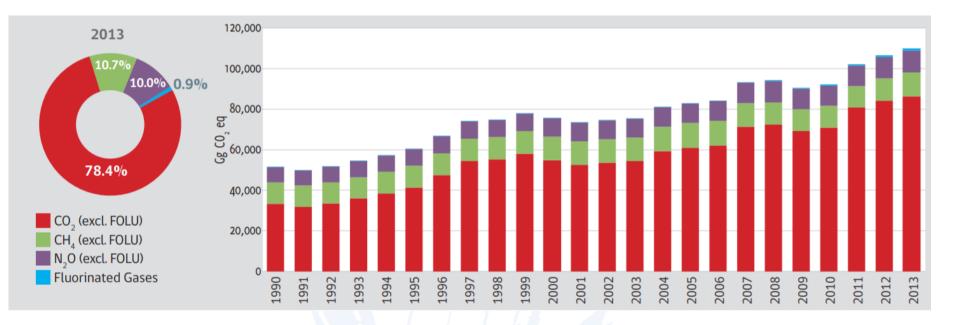

icap

Which GHG should be covered?

- Consider jurisdiction's emissions profile.
- The more gases you cover, the more
 comprehensive your ETS will be.
- Different GHGs have different global warming potentials.
- How easy/costly is it to monitor, report and verify different gases?

Chile's NGHGI: emissions of GHG (Gg CO2 eq) by sector (excluding FOLU), series 1990-2013

• Energy accounts for over three quarters of Chile's emissions and has been the key driver in emissions growth.



Different gas coverages across existing ETS icap

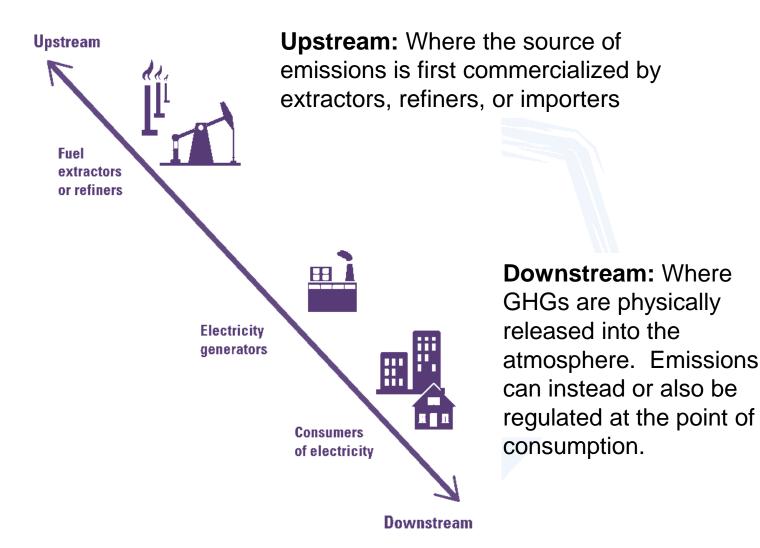
TABLE 1.1 Gas Coverage in Existing ETSs

	CO2	CH4	N ₂ O	HFCs	PFCs	SF ₆	NF ₃
EU							
Alberta							
Switzerland							
NZ							
RGGI							
Tokyo							
California							
Kazakhstan							
Québec							
Beijing							
Guangdong							
Shanghai							
Shenzhen							
Tianjin							
Chongqing							
Hubei							
Republic of Korea							

Chile's NGHGI: emissions of GHG (Gg CO2 eq) by gas (excluding FOLU), series 1990-2013

• CO2 is the major source of emissions in Chile and has also been the key driver of emissions growth.

Outline


- 1. Breadth of the scope
- 2. Sectors and gases to be included
- 3. Point of regulation
- 4. Emissions thresholds
- 5. Level of reporting obligation

At which point along the production chain should emissions be regulated?

STEP 1: DECIDE THE SCOPE At which point should emissions be regulated?

International Carbon Action Partnership

When to depart from regulating at the point of emission?

consider:

- accuracy of implied emissions at the point of regulation, as this will determine efficiency of price incentives
- capacity for cost pass through is needed to ensure carbon price incentives apply to the activity responsible for emissions, rather than just redistributing costs
- administrative cost savings for liable entities and government, will determine whether it is worthwhile applying liabilities upstream or downstream of actual point of emission

STEP 1: DECIDE THE SCOPE

Upstream Coverage

- Lower number of entities with large liabilities
- Lower administrative costs
- Thresholds are not required
- Higher coverage

Upstream coverage 51% of emissions

 \bigstar

Hybrid coverage 85% of emissions

Downstream coverage

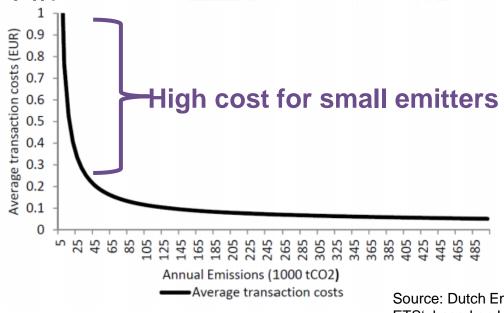
- Existing reporting practices favor downstream coverage
- Cost pass-through higher compared to upstream
- Higher carbon price visibility compared to upstream and more direct behavioural incentive to emitters
- Method of allocation some allocation methods require downstream regulation (output based)

Example: considering trade-offs between point icap of regulation, and cost of administration

	Household natural gas / Petroleum for transport	Pastoral agriculture		
Alternate point of regulation	Upstream (retailers or wholesalers)	Downstream (agricultural processors)		
Accuracy of implied emissions	High, close link between estimated and actual emissions	Low, emissions vary widely due to farm practices and natural variability		
Capacity for cost pass through	High, consumers have little option for substitution	Moderate, industry average cost passed on to farmers, driving product substitution		
Relative administrative cost savings	High, regulating individual households and motorists not practical	High, direct measurement of agricultural emissions difficult and expensive		

Outline

- 1. Breadth of the scope
- 2. Sectors and gases to be included
- 3. Point of regulation
- 4. Emission thresholds
- 5. Level of reporting obligation


How can we avoid too many small entities in the ETS?

The use of thresholds

Exclude entities below a certain size from the ETS:

- Exclude participants without excluding many emissions
- Thresholds can be based on annual GHG emissions, energy consumption, imports, production, capacity, Average transaction cost/tCO2 emitted in Germany

Source: Dutch Emissions Authority (2015) 'A simple and effective EU ETS', based on Heindl, 2012

Considerations when setting thresholds

- Number of small sources: with many small sources of emissions, ETS threshold may need to be lower
- Regulatory and firm capacities: small firms may have limited financial and human capital to participate in ETS
- Ability to implement other climate measures for firms below threshold
- Intrasectoral leakage: Threshold may create competitive distortions between those above and below
- Potential for gaming: companies may split up to fall below the threshold

Outline


- 1. Breadth of the scope
- 2. Sectors and gases to be included
- 3. Point of regulation
- 4. Emissions thresholds
- 5. Level of reporting obligation

Level of reporting

The company

- Lower administrative costs lower number of entities with large liabilities
- Greater flexibility companies can manage emissions between installations without the need to trade

→ Republic of Korea, Chinese pilots, Kazakhstan

STEP 1: DECIDE THE SCOPE

Level of reporting

The installatior

 When multiple companies operate within the same installation, reporting at the installation level can be simpler

- Double counting can be avoided
- → European Union, Tokyo

-> Path dependency: consider the existing regulatory framework & point of reporting obligations

Conclusions

- Defining the scope requires deciding what sources and emissions should be covered, the point of regulation, emissions thresholds and the with whom the compliance responsibility lies
- Broader scope means inclusion of greater portion of emissions
- Generally, broader scope gives more certainty in reaching target, likely lowers compliance costs, and reduces competitiveness
- But a broader scope can involve high administration costs

Thank you for your attention

William Acworth

Taller de Capacitación en Mecanismos de Emisión Transables

Por encargo de:

de la República Federal de Alemania